skip to main content


Search for: All records

Creators/Authors contains: "Li, Chengyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Odor-guided navigation is an indispensable aspect of flying insects' behavior, facilitating crucial activities such as foraging and mating. The interaction between aerodynamics and olfaction plays a pivotal role in the odor-guided flight behaviors of insects, yet the interplay of these two functions remains incompletely understood. In this study, we developed a fully coupled three-way numerical solver, which solves the three-dimensional Navier–Stokes equations coupled with equations of motion for the passive flapping wings, and the odorant advection–diffusion equation. This numerical solver is applied to investigate the unsteady flow field and the odorant transport phenomena of a fruit fly model in odor-guided upwind surge flight over a broad spectrum of reduced frequencies (0.325–1.3) and Reynolds numbers (90–360). Our results uncover a complex dependency between flight velocity and odor plume perception, modulated by the reduced frequency of flapping flight. At low reduced frequencies, the flapping wings disrupt the odor plume, creating a saddle point of air flow near the insect's thorax. Conversely, at high reduced frequencies, the wing-induced flow generates a stagnation point, in addition to the saddle point, that alters the aerodynamic environment around the insect's antennae, thereby reducing odor sensitivity but increasing the sampling range. Moreover, an increase in Reynolds number was found to significantly enhance odor sensitivity due to the synergistic effects of greater odor diffusivity and stronger wing-induced flow. These insights hold considerable implications for the design of bio-inspired, odor-guided micro air vehicles in applications like surveillance and detection.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Odor-guided navigation is fundamental to the survival and reproductive success of many flying insects. Despite its biological importance, the mechanics of how insects sense and interpret odor plumes in the presence of complex flow fields remain poorly understood. This study employs numerical simulations to investigate the influence of turbulence, wingbeat-induced flow, and Schmidt number on the structure and perception of odor plumes by flying insects. Using an in-house computational fluid dynamics solver based on the immersed-boundary method, we solve the three-dimensional Navier–Stokes equations to model the flow field. The solver is coupled with the equations of motion for passive flapping wings to emulate wingbeat-induced flow. The odor landscape is then determined by solving the odor advection–diffusion equation. By employing a synthetic isotropic turbulence generator, we introduce turbulence into the flow field to examine its impact on odor plume structures. Our findings reveal that both turbulence and wingbeat-induced flow substantially affect odor plume characteristics. Turbulence introduces fluctuations and perturbations in the plume, while wingbeat-induced flow draws the odorant closer to the insect’s antennae. Moreover, we demonstrate that the Schmidt number, which affects odorant diffusivity, plays a significant role in odor detectability. Specifically, at high Schmidt numbers, larger fluctuations in odor sensitivity are observed, which may be exploited by insects to differentiate between various odorant volatiles emanating from the same source. This study provides new insights into the complex interplay between fluid dynamics and sensory biology and behavior, enhancing our understanding of how flying insects successfully navigate using olfactory cues in turbulent environments.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  3. Abstract

    Metachronous rowing is a swimming mechanism widely adopted by small marine invertebrate like comb jellies, in which rows of appendages perform propulsive strokes sequentially in a coordinated manner with a fixed phase difference. To simulate metachronous rowing at intermediate Reynolds number, in this paper, a row of flexible cilia models was placed inside the flow field, with their roots stroke at a sinusoidal function of time and a fixed phase difference. A fully coupled two-way numerical solver was developed, which solves the Navier-Stokes equations for the fluid field coupled with the differential equation for the flexible cilia model. This numerical solver is applied to investigate how the row of cilia models are deformed by the hydrodynamic forces (pressure and shear) and momentum and thus impact hydrodynamic performance. Results show that the passive deformation of cilia potentially improve the hydrodynamic performance compared to the rigid cilia. With the metachronous rowing mechanism, the cilia generate the thrust to move forward. The approach used in this study presents a general way to explore the fluid dynamics of complex fluid-structure interaction problems.

     
    more » « less
    Free, publicly-accessible full text available October 29, 2024
  4. Metachronal rowing is a biological propulsion mechanism employed by many swimming invertebrates (e.g. copepods, ctenophores, krill and shrimp). Animals that swim using this mechanism feature rows of appendages that oscillate in a coordinated wave. In this study, we used observations of a swimming ctenophore (comb jelly) to examine the hydrodynamic performance and vortex dynamics associated with metachronal rowing. We first reconstructed the beating kinematics of ctenophore appendages based on a high-speed video of a metachronally coordinated row. Following the reconstruction, two numerical models were developed and simulated using an in-house immersed-boundary-method-based computational fluid dynamics solver. The two models included the original geometry (16 appendages in a row) and a sparse geometry (8 appendages, formed by removing every other appendage along the row). We found that appendage tip vortex interactions contribute to hydrodynamic performance via a vortex-weakening mechanism. Through this mechanism, appendage tip vortices are significantly weakened during the drag-producing recovery stroke. As a result, the swimming ctenophore produces less overall drag, and its thrust-to-power ratio is significantly improved (up to 55.0 % compared with the sparse model). Our parametric study indicated that such a propulsion enhancement mechanism is less effective at higher Reynolds numbers. Simulations were also used to investigate the effects of substrate curvature on the unsteady hydrodynamics. Our results illustrated that, compared with a flat substrate, arranging appendages on a curved substrate can boost the overall thrust generation by up to 29.5 %. These findings provide new insights into the fluid dynamic principles of propulsion enhancement underlying metachronal rowing.

     
    more » « less
    Free, publicly-accessible full text available November 10, 2024
  5. The unsteady aerodynamics mechanisms, such as coupled wing-body aerodynamics, are believed to benefit the flapping flight of the insects. The butterfly takes more advantage of it than other insects because of its unique wing-body morphology and periodical body rotational motion. Our study conducted 3D reconstruction of a monarch butterfly and we adopted an in-house three-dimensional immersed-boundary-method Navier-Stokes equation solver to simulate the natural forward flight of the butterfly. By comparing the simulation with and without the influence of the body, we present a parametric study that proves the coupled wing-body interaction can improve the thrust-to-power ratio. During the upstroke the thrust is improved by 10%. During the upstroke, a posterior body vortex (PBV) that is attached beneath the body is induced by wing motion, which forms a jet flow as upstroke goes on. We visualized wake structures by Q-criterion and observed that the LEV has the strongest circulation at 68% wingspan. The circulation along the leading-edge shows similar trend as the instantaneous lift. 
    more » « less
    Free, publicly-accessible full text available June 8, 2024
  6. Flying insects possess sophisticated olfactory systems that they use to find food, locate mates, and avoid predators. It is suspected that insects flap their wings to draw odor plumes toward their antennae. This behavior enhances their olfactory sensitivity and is analogous to sniffing in mammals. However, insects’ wing kinematics change drastically as their flight speed increases, and it is unknown how these changes affect the insect’s odorant perception. To address this question, we simulated odor-tracking hawkmoth fight at 2 m/s and 4 m/s using an in-house immersed-boundary-method-based CFD solver. The solver was used to solve the Navier-Stokes equations that govern the flow, as well as the advection-diffusion equation that governs the odor transport process. Results show that hawkmoths use their wings to significantly increase the odor intensity along their antennae. However, peak odor intensity is 39% higher during 2 m/s flight than 4 m/s flight. We therefore suspect that insects have greater olfactory performance at lower forward flight speed. Findings from this study could provide inspiration for bio-inspired odor-guided navigation technology. 
    more » « less
    Free, publicly-accessible full text available June 8, 2024
  7. Abstract

    Insects rely on their olfactory system to forage, prey, and mate. They can sense odorant plumes emitted from sources of their interests with their bilateral odorant antennae, and track down odor sources using their highly efficient flapping-wing mechanism. The odor-tracking process typically consists of two distinct behaviors: surging upwind at higher velocity and zigzagging crosswind at lower velocity. Despite extensive numerical and experimental studies on odor guided flight in insects, we have limited understandings on the effects of flight velocity on odor plume structure and its associated odor perception. In this study, a fully coupled three-way numerical solver is developed, which solves the 3D Navier-Stokes equations coupled with equations of motion for the passive flapping wings, and the odorant convection-diffusion equation. This numerical solver is applied to resolve the unsteady flow field and the odor plume transport for a fruit fly model at different flight velocities in terms of reduced frequency. Our results show that the odor plume structure and intensity are strong related to reduced frequency. At smaller reduced frequency (larger forward velocity), odor plume is pushed up during downstroke and draw back during upstroke. At larger reduced frequency (smaller forward velocity), the flapping wings induce a shield-like air flow around the antennae which may greatly increase the odor sampling range. Our finding may explain why flight velocity is important in odor guided flight.

     
    more » « less
  8. Abstract

    Metachronal motion is a unique swimming strategy widely adopted by many small animals on the scale of microns up to several centimeters (e.g., ctenophores, copepods, krill, and shrimp). During propulsion, each evenly spaced appendage performs a propulsive stroke sequentially with a constant phaselag from its neighbor, forming a metachronal wave. To produce net thrust in the low-to-intermediate Reynolds number regime, where viscous forces are dominant, the beat cycle of a metachronal appendage must present significant spatial asymmetry between the power and recovery stroke. As the Reynolds number increases, the beat cycle is observed to change from high spatial asymmetry to lower spatial asymmetry. However, it is still unclear how the magnitude of spatial asymmetry can modify the shear layers near the tip of appendages and thus affect its associated hydrodynamic performance. In this study, ctenophores are used to investigate the hydrodynamics of multiple appendages performing a metachronal wave. Ctenophores swim using paddle-like ciliary structures (i.e., ctenes), which beat metachronally in rows circumscribing an ovoid body. Based on high-speed video recordings, we reconstruct the metachronal wave of ctenes for both a lower spatial asymmetry case and a higher spatial asymmetry case. An in-house immersed-boundary-method-based computational fluid dynamics solver is used to simulate the flow field and associated hydrodynamic performance. Our simulation results aim to provide fundamental fluid dynamic principles for guiding the design of bio-inspired miniaturized flexible robots swimming in the low-to-intermediate Reynolds number regime.

     
    more » « less